
[Mahalakshmi et al., 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[33-39]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

Electing the Query Directory Using PSO in DCIM
S.Mahalakshmi*

* ME, Networking and Internet Engineering, Ratnavel Subramaniam College Of Engineering &

Technology, Dindigul, India

mahamkce@gmail.com

Abstract
 In MANET environments, data caching is essential because it increases the ability of mobile devices to

access desired data, and to improve overall system performance. We propose a distributed cache invalidation

mechanism (DCIM), which is client based cache consistency scheme that's enforced on prime of an antecedently

proposed design for caching information things in mobile ad hoc networks (MANETs), specifically COACS,

wherever special nodes cache the queries and also the addresses of the nodes that store the responses to those

queries. We’ve additionally antecedently proposed a server-based consistency theme, whereas in this paper, we tend

to introduce DCIM that's entirely client-based. DCIM could be a pull-based algorithm that implements adaptive time

to live (TTL), piggybacking, and prefetching, and provides close to robust consistency capabilities. Cached

information things are assigned adaptive TTL values that correspond to their update rates at the info source,

wherever things with expired TTL values are classified in validation requests to the info source to refresh them,

whereas valid ones however with high request rates are prefetched from the server. During this paper, DCIM is

analyzed to assess the delay and information measure gains (or costs) compared to polling on every occasion and

push-based schemes. To reduce the delay time we propose a selection based PSO algorithm for elect the Query

Director (QD). DCIM was additionally enforced using ns2, and compared against client-based and server-based

schemes to assess its performance through an experiment. The consistency quantitative relation, delay, and overhead

traffic are according versus many variables, where DCIM showed better result by using PSO algorithm.

Keywords: MANET, data caching, pull-based, TTL, PSO.

 Introduction
As Mobile Ad Hoc Networks (MANETs)

are becoming increasingly widespread, the need for

developing methods to improve their performance

and reliability increases. One of the biggest

challenges in MANETs lies in the creation of

efficient routing techniques, but to be useful for

applications that demand collaboration; effective

algorithms are needed to handle the acquisition and

management of data in the highly dynamic

environments of MANETs.

The major issue that faces client cache

management concerns the maintenance of data

consistency between the cache client and the data

source [1]. All cache consistency algorithms seek to

increase the probability of serving from the cache

data items that are identical to those on the server.

However, achieving strong consistency, where cached

items are identical to those on the server, requires

costly communications with the server to validate

(renew) cached items, considering the resource

limited mobile devices and the wireless environments

they operate in. Consequently there exist different

consistency levels describing the degree to which the

cached data is up to date. These levels, other than

strong consistency, are weak consistency, delta

consistency [2] probabilistic consistency and

probabilistic delta consistency. With weak

consistency, client queries might get served with

inconsistent (stale) data items, while in delta

consistency, cached data items are stale for up to a

period of time denoted as delta. In probabilistic

consistency, a data item is consistent with the source

with a certain probability denoted as p. Finally, in

probabilistic delta consistency, a certain cached item

is at most delta units of time stale with a probability

not less than p.

In order to fetch the data and to maintain delay free

communication, three types of basic algorithms were

used:

(1) Push- or Server-based

(2) Pull- or client based

(3) Hybrid based.

1) In First approach, Push- or server based, content

owners (server) keep track of locations and send

invalidation reports (messages) or updated contents

whenever the contents are modified. It informs client

http://www.ijesrt.com/

[Mahalakshmi et al., 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[33-39]

about its updates and its cache current state. Because

of server have to maintain all update records, when

request arises frequently it is so hardly get the

queries. It is a dangerous disadvantage in this

approach.

2) In Second approach, Pull-or Client-based methods

are client-based mechanism, the client checks the

updates, considered outdated, are validated before

serving new requests. In this client asks server to

update or validate its cached data. In this every node

maintains it update history, when request arises

frequently, it is easy to fetch data from the nodes.

3) In Third approach, where both caching node and

server cooperate to keep the data to update. Server

pushes the updates or client pulls them is Hybrid

based.

The pull-based policy that is most

commonly used in practice is Time-to-Live (TTL),

which estimates an expiration time for an object as a

function of the time it was last modified. This policy

assumes that objects that were recently updated in the

past are more likely to be updated in the near future,

and does not consider earlier updates to an object.

The TTL policy works well for objects that

experience bursts of updates that occur close together.

However, this policy may not work well for objects

with more regular and predictable behavior

In this paper, we propose a pull-based

algorithm that implements adaptive TTL,

piggybacking, prefetching, and provides near strong

consistency guarantees. Cached data items are

assigned adaptive TTL values that correspond to their

query directory at the data source. Expired items as

well as non-expired ones but meet certain criteria are

grouped in validation requests to the data source,

which in turn sends the cache devices the actual items

that have changed, or invalidates them, based on their

storage capacity of query directory. This approach,

which we call distributed cache invalidation

mechanism (DCIM), works on top of the COACS

cooperative caching architecture we introduced in [3].

Here we propose by using PSO algorithm which is

selection based algorithm for electing the query

directory in client side approach employing adaptive

TTL and achieving superior availability, severe

delays and network traffic, it needs entry list to

maintain the caching data table to avoid unnecessary

delays. It selects the query directory based on storage

capacity by using the PSO algorithm

In the rest of this paper, Section 2 discusses

related work and reveals the contributions of the

proposed system, which we elaborate in Section 3.

Section 4 provides an analytical analysis of the

system, whereas Section 5 presents the experimental

results and discusses their significance. Section 6

finishes the paper with concluding remarks and

suggestions for future works.

Literature overview
Caching has its capability to improve the

performance and available limitations of weakly

connected and disconnected operation and thus it

plays a vital role in the mobile computing. However

calculating the alternative caching approach for

mobile computing creates problem we introduced the

in [4]. In general, the cache management in mobile

environment involves the following issues to be

addressed.

1. The cache discovery algorithm that is used to

efficiently discover, select, and deliver the requested

data item(s) from neighboring nodes.

2. Cache admission control - this is to decide on what

data items can be cached to improve the performance

of the caching system.

3. The cache consistency algorithm which ensures

that updates are propagated to the copies elsewhere,

and no stale data items are present.

4. The design of cache replacement algorithm - when

the cache space is sufficient for storing one new item,

the client places the item in the cache. Otherwise, the

possibility of replacing other cached item(s) with the

new item is considered.

Caching frequently used data objects at the

local buffer of a Mobile Node is a better way to

decrease query delay, save bandwidth and ameliorate

system performance. However, in wireless mobile

computing environments, difficulty in cache

consistency arises with the frequent disconnection and

roaming of an Mobile Node. A strategy that is

successful must be able to efficiently handle both

disconnectedness and mobility. The advantage with

the broadcast is that it is able to serve an arbitrary

number of Mobile Nodes with minimum bandwidth

consumption. So, efficient mobile data transmission

architecture should prudently design its broadcast and

cache management schemes to maximize and

minimize delay. Efficient mobile data transmission

architecture should also be scalable, such that it works

efficiently for large database systems and also

upholds a large number of Mobile Nodes.

 Cache Invalidation techniques, earliest

scheme, used in mobile ad hoc networks to maintain

consistency of data among cache and to reduce long

query latency. Server-based mechanism normally

implements invalidation reports (IRs), are broadcasted

periodically.

http://www.ijesrt.com/

[Mahalakshmi et al., 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[33-39]

Fig 1: DCIM Design

In cache invalidation the push-based

mechanism mainly uses invalidation reports (IRs).

The original IR approach was proposed, but since

then several algorithms have been proposed. They

include stateless schemes where the server stores no

information about the client caches and state-full

approaches where the server maintains state

information, as in the case of the AS scheme. Many

optimizations and hybrid approaches were proposed

to reduce traffic and latency, like SSUM [5], and the

SACCS scheme where the server has partial

knowledge about the mobile node caches, and flag

bits are used both at the server and the mobile nodes

to indicate data updates. Such mechanisms necessitate

server side modifications and overhead processing.

More crucially, they require the server to maintain

some state information about the MANET, which is

costly in terms of bandwidth consumption especially

in highly dynamic environments. DCIM, on the other

hand, belongs to a different class of approaches, as it

is a completely pull-based scheme. Hence, we will

focus our survey of previous work on pull-based

schemes, although we will compare the performance

of DCIM with that of our recently proposed push-

based approach, namely SSUM [5], in Section 5.

Push-based strategies are more suitable to a stable

network. They can provide good consistency

guarantees for users who are always online and

reachable from the source. However, such strategies

have low query latency and cannot solve the

disconnection problem. If the cache nodes are

disconnected from the network, they cannot receive

the invalidation messages and will share the stale data

upon reconnection.

The client processes generated queries one

by one. If the referenced data items are not cached on

the client side, the data ids are sent to the server for

fetching the data items. Once the requested data items

arrive on the channel, the client brings them into its

cache. Client cache management follows the LRU

replacement policy, but there are some differences

between the TS (or BS) algorithm and our algorithm.

In the TS algorithm, since the clients will not use the

invalid cache items, the invalidated cache items are

first replaced. If there is no invalid cache item, LRU

is used to replace the oldest valid cache item. In our

algorithm, if there are invalid data items, the client

replaces the oldest invalid item. If there is no invalid

cache item, the client replaces the oldest valid cache

item. The difference is due to the fact that the clients

in our algorithm can download data from the

broadcast channel. The IP TTL is used, somewhat

schizophrenically, as both a hop count limit and a

time limit. Its hop count function is critical to

ensuring that routing problems can't melt down the

network by causing packets to loop infinitely in the

network. The time limit function is used by transport

protocols such as TCP to ensure reliable data transfer.

Many current implementations treat TTL as a pure

hop count, and in parts of the Internet community

there is a strong sentiment that the time limit function

should instead be performed by the transport

protocols that need it.

An example of pull approaches is the time to

live (TTL)-based algorithms, where a TTL value is

stored alongside each data item d in the cache, and d

is considered valid until T time units go by since the

last update. Such algorithms are popular due to their

simplicity, sufficiently good performance, and

flexibility to assign TTL values to individual data

items [6]. Also, they are attractive in mobile

environments because of limited device energy and

network bandwidth and frequent device

disconnections. TTL algorithms are also completely

client based and require minimal server functionality.

From this perspective, TTL-based algorithms are

more practical to deploy and are more scalable.

In this specification, we have reluctantly

decided to follow the strong belief among the router

vendors that the time limit function should be

optional. They argued that implementation of the time

limit function is difficult enough that it is currently

not generally done. They further pointed to the lack of

documented cases where this shortcut has caused TCP

to corrupt data (of course, we would expect the

problems created to be rare and difficult to reproduce,

so the lack of documented cases provides little

reassurance that there haven't been a number of

undocumented cases). IP multicast notions such as the

http://www.ijesrt.com/

[Mahalakshmi et al., 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[33-39]

expanding ring search may not work as expected

unless the TTL is treated as a pure hop count [7]. The

same thing is somewhat true of trace route.

Proposed work
Cache Invalidation

As the “Cache Invalidation Techniques”

researchers have proposed a wide range of strategies

for maintaining cache consistency. However, each

strategy has its own design goals and application

scenarios. No uniform or structured methods exist for

current work, making it difficult to evaluate their

relative effectiveness and performance. Cache

invalidation techniques have been widely used in

distributed systems to maintain data consistency

among caches [8].

However, a critical design issue, cache

invalidation, needs to be addressed for applications

requiring data consistency with the server. When a

data item in a server is updated, it is necessary to

make sure that the cached copies of this data item are

validated before they can be used.

COACS

The proposed DCIM system builds on top of

COACS, which we introduced in [7] and did not

include provisions for consistency. Briefly, the

system has three types of nodes: caching nodes (CNs)

that cache previously requested items, query

directories (QDs) that index the cached items by

holding the queries along with the addresses of the

corresponding CNs, and requesting nodes (RNs) that

are ordinary nodes. Any node, including a QD or a

CN, can be a requesting node, and hence, an RN is

not actually a special role, as it is only used in the

context of describing the system [9]. One, therefore,

might view the employed caching system as a two

layered distributed database. The first layer contains

the QDs which map the queries to the caching nodes

which hold the actual items that are responses to these

queries, while the second layer is formed by the CNs.

The operations of the QDs and CNs are described

DCIM is scalable by virtue of the CNs

whose number can increase as the size of the network

grows (each node can become a CN for an item it

requests if not cached elsewhere in the network), and

thus is more suitable to dynamic MANETs than a

push-based alternative since the server does not need

to be aware of CN disconnections. DCIM is also

more suitable when data requests are database queries

associated with tables and attributes. In a push-based

approach, the server would have to map a cached

query to all of its data sources (table attributes) and

execute this query proactively whenever any of the

sources is updated. Moreover, DCIM adapts the TTL

values to provide higher consistency levels by having

each CN estimate the inter update interval and try to

predict the time for the next update and sets it as the

item’s expiry time[10 , 11]. It also estimates the inter-

request interval for each data item to predict its next

request time, and then prefetches items that it expects

to be requested soon.

Time-to-live

Caching mechanisms in Internet systems are

designed to scale to large numbers of caches. A

common way of achieving scalable caching is to use

time-to-live (TTL)-based caches, which work as

follows: for any data item D, the site that maintains

the current, authoritative version of D is called the

origin. If the origin receives a request for D at time t it

returns the current version along with a TTL period,

T. The requestor, which is a cache used by one or

more clients or client caches, is allowed to cache D.

Any subsequent requests at the request or in the time

interval (t, t + T) can instead be served from the

requestor’s cache without contacting the origin site.

However, the first request after time t+T must go to

the origin site, since the TTL has expired for D in the

requestor’s cache. A time-to-live (TTL) interval t is

defined for data entries stored in the wireless

handheld device. The TTL for a data entry is

determined based on whether the data entry is

modified.

TTL-based caching scales well because

origin sites neither have to maintain any per-requestor

(i.e., per-cache) state, nor even have to know of the

existence of caches. This also enables “opportunistic

caching” by caches across the Internet.

Pull-based freshness has also been addressed

in the context of synchronizing a large collection of

objects, e.g., improving the performance of web

crawlers [4, 8, 14]. Updates are detected by

periodically prefetching objects from remote sources

to maximize the freshness of cached objects. These

pull-based policies are not based on complete update

histories and therefore may be less accurate.

Query Directory (QD)

 In distinction to the CNS that becomes

caching nodes after they initial request non-cached

information, QDs square measure non-appointive

supported their resource capabilities, as delineated. A

procedure is enclosed in [11] that explain however the

quantity of QDs within the system is delimited by 2

limits. The boundary corresponds to having enough

QDs, such a further (elected) QD won't yield A

considerable reduction in average QD load. The edge,

on the opposite hand corresponds to a delay threshold,

since traversing a bigger range of QDs can cause

http://www.ijesrt.com/

[Mahalakshmi et al., 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[33-39]

higher response times. Between these limits, the

quantity of QDs will modification dynamically

betting on what quantity of the QD storage capability

is employed. Within the simulations performed

during this work, the quantity of QDs averaged seven

at steady state once the quantity of nodes was one

hundred. Regarding load, it had been shown in [6]

that the common load on a QD node is one.5 times

the common load on a CN node. Since in DCIM the

QDs don't seem to be assigned further roles as

compared, their average load mustn't modification. In

general, the QD system yields a high hit rate that

causes the request to traverse less QDs on the

average, and consequently keeps the load per QD

fairly low. Moreover, aside from the occasional

COACS updates concerning replaced things (due to

capability constraints), the CNS ne'er update the QDs

concerning the invalid information things.

Consequently, the QD perpetually forwards the DRP

to the CN just in case of a success. This makes the

system easier and saves traffic, however would

possibly incur further delay on condition that the item

is invalid at the CN, as this can cause the CN to

contact the server to update the info item. However,

this extra internal delay is little in comparison to the

server delay, and it's remunerated by reduced

consistency updates from the CNS to the QDs. Also,

we have a tendency to show later within the

experimental analysis section that the system

maintains a suitable hit rate, which means that the

chance an information item are invalid at the CN is

low. By victimization the PSO algorithmic rule we

are able to elect the question directory for store the

info in QDs.

(i) PSO algorithm

When the search space is too large to search

exhaustively, population based searches may be a

good alternative, however, population based search

techniques cannot guarantee you the optimal (best)

solution.

Particle Swarm has two primary operators:

Velocity update and Position update. During each

generation each particle is accelerated toward the

particles previous best position and the global best

position. Each iteration new velocity value for each

particle is calculated based on its current velocity in

[8], the distance from its previous best position, and

the distance from the global best position. The new

velocity value is then used to calculate the next

position of the particle in the search space. This

process is then iterated a set number of times or until

a minimum error is achieved.

Experimental results
DCIM was implemented using ns2, and a

replacement into class was developed that mimics the

server method storing in Query directory and process

the validation requests. Timers were utilised to

implement the monitoring thread: the timer sleeps for

the polling interval duration and so wakes up to run

the innerloop operate, i.e., when Npoll runs of the

innerloop, (the piggybacking interval) the outer-loop

is invoked. Ns2 may be a single rib simulator,

however it's all the same capable of dominant the

operations of the timers autonomously, so acting

similar to a multithreaded application [12, 13, 14].

Two approaches were implemented for reduce the

traffic in MANET DCIM architecture: the Poll based

approach which is the poll-every-time mechanism,

where each time data is requested, it is validated and

check expire interval time. Then another is calculating

the TTL value for adding to the current time to the

expiry interval, when TTL value was expired the item

is flagged and it is fetched from server in [4]. We can

select the query directory by using the PSO algorithm

for allotting the space for the data that we fetch

already.

Fig 2: Performance evaluation of DCIM mechanisms

In Fig 2: it explains the performance

evaluation of DCIM method. How the method is

perform well when compared to other technique like

Fixed TTL, SSUM, and COACS. It improves the

consistency ratio when compare to other technique.

0

100

200

300

400

500

600

700

10 20 30 40 50

DCIM COACS

Fixed TTL SSUM

http://www.ijesrt.com/

[Mahalakshmi et al., 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[33-39]

Fig 3: Delay traffic caching

In Fig: 3 it reduce the delay of traffic, so that

the data can send easily from server to client by using

the TTL value by PSO algorithm it select the storage

device in Query Directory so it can reduce the delay

of traffic when compare to existing one.

Comparing
 Comparing of this entire algorithm, PSO

algorithm is more efficient. The general architecture

of mobile ad hoc networks consists of caching node

used to store the wandering data in order to provide

requesting query data in query directory to any other

prescribed request nodes in [7]. By using the query

directory it elect the storage space by using PSO

algorithm. It is one of the best one to select the

storage space in query directory. Here Base Station

transfer queries to all the entire nodes and each of the

Access Point (AP) acts as a gateway in order to

transmit the data to every Nominal Node (Requesting

Node).Through which by using PSO client pulling

may solve the traffic delay.

Fig 4: Performance comparison of SSUM, COACS, and

PSO.

COACS achieves consistency with a delta

equal to the communication time between the server

and caching nodes illustrated in Fig.3. DCIM also

provides consistency guarantees if the polling interval

is not high, with a comparable generated traffic.

For traffic, in SSUM it's because of

maintaining the server state, and pushing knowledge

things proactively, whereas in DCIM it's as a result of

validation requests and proactive taking of things.

UIR provides powerful consistency however at the

expense of additional traffic and deteriorated

knowledge handiness, whereas DCIM on the opposite

hand provides close to sturdy consistency as was

shown earlier, however with significantly lower

traffic and better knowledge availability. Moreover,

Fig. three shows the effectiveness of PSO as a

caching system in providing knowledge handiness

while keeping traffic within the network low when

put next to other caching systems. One will sit down

with [2] for elaborate analysis of COACS in PSO and

comparisons to existing systems. We conclude the

experimental results with Table one, which

summarizes key properties of DCIM and compares

them to the given pull-based approaches and SSUM.
TABLE 1: Comparison between DCIM and Other

Approaches

Property SSUM FIXED TTL

Type Push(server

side)

Pull(Client

side)

Query Delay Low Based on

TTL Value

Consistency High Depending

on TTL

Server Medium Low to

0

100

200

300

400

500

600

700

10 20 30 40 50

PSO COACS

0

100

200

300

400

500

600

700

10 20 30 40 50

SSUM COACS PSO

http://www.ijesrt.com/

[Mahalakshmi et al., 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[33-39]

traffic Medium

Property COACS PSO

Type Pull based Storage

Query Delay Low Low

Consistency medium Depending

on storage

Server

traffic

Low Very low

Conclusion
We presented a Pull based cache consistency

scheme for MANETs that relies on estimating the

inter update intervals of data items to set their expiry

time. The use of PSO algorithm is to increase the

accuracy of its consistency ratio, traffic, and query

delay. We compare this approach to TTL and server

based approach (SSUM and UIR). This shows a

better result when compare to existing one. For future

work, we will explore three directions to extend

DCIM. First, we will investigate more sophisticated

TTL algorithms to replace the running average

formula. Second, we will extend our preliminary

work in [1] to develop a complete replica allocation.

Third, DCIM assumes that all nodes are well

behaved, as issues related to security were not

considered. However, given the possibility of

network intrusions, we will explore integrating

appropriate security measures into the system

functions. These functions include the QD election

procedure using PSO algorithm, QD traversal, QD

and CN information integrity, and TTL monitoring

and calculation. The first three can be mitigated

through encryption and trust schemes. The last issue

was not tackled before, except in the case of [10].

References
1. Kassem Fawaz, “DCIM: Distributed Cache

Invalidation Method for Maintaining Cache

Consistency in Wireless Mobile Networks”,

VOL. 12, NO. 4, APRIL 2013.

2. H. Artail, H. Safa, K. Mershad, Z. Abou-

Atme, and N. Sulieman, “COACS: A

Cooperative and Adaptive Caching System

for MANETS,” IEEE Trans. Mobile

Computing, vol. 7, no. 8, pp. 961- 977, Aug.

2008.

3. G. Cao, “A Scalable Low-Latency Cache

Invalidation Strategy for Mobile

Environments,” IEEE Trans. Knowledge

and Data Eng., vol. 15, no. 5, pp. 1251-

1265, Sept./Oct. 2003.

4. J. Cao, Y. Zhang, G. Cao, and X. Li, “Data

Consistency for Cooperative Caching in

Mobile Environments,” Computer, vol. 40,

no. 4, pp. 60-66, 2007.

5. K. Mershad and H. Artail, “SSUM: Smart

Server Update Mechanism for Maintaining

Cache Consistency in Mobile

Environments,” IEEE Trans. Mobile

Computing, vol. 9, no. 6, pp. 778-795, June

2010.

6. Q. Hu and D. Lee, “Cache Algorithms Based

on Adaptive Invalidation Reports for Mobile

Environments,” Cluster Computing, vol. 1,

pp. 39-50, 1998.

7. X. Tang, J. Xu, and W-C. Lee, “Analysis of

TTL-Based Consistency in Unstructured

Peer-to-Peer Networks,” IEEE Trans.

Parallel and Distributed Systems, vol. 19,

no. 12, pp. 1683-1694, Dec. 2008.

8. Y. Fang, Z. Haas, B. Liang, and Y.B. Lin,

“TTL Prediction Schemes and the Effects of

Inter-Update Time Distribution on Wireless

Data Access,” Wireless Networks, vol. 10,

pp. 607-619, 2004.

9. S. Lim, W.C. Lee, G. Cao, and C. Das,

“Cache Invalidation Strategies for Internet-

Based Mobile Ad Hoc Networks,” Computer

Comm., vol. 30, pp. 1854-1869, 2007.

10. T. Hara and S. Madria, “Dynamic Data

Replication using Aperiodic Updates in

Mobile Ad Hoc Networks,” Proc. Database

Systems for Advanced Applications, pp. 111-

136, 2004.

11. W. Zhang and G. Cao, “Defending Against

Cache Consistency Attacks in Wireless Ad

Hoc Networks,” Ad Hoc Networks, vol. 6,

pp. 363-379, 2008.

12. K. Fawaz and H. Artail, “A Two-Layer

Cache Replication Scheme for Dense Mobile

Ad Hoc Networks,” Proc. IEEE Global

Comm. Conf. (GlobeCom), Dec. 2012.

13. K.S. Khurana, S. Gupta, and P. Srimani, “A

Scheme to Manage Cache Consistency in a

Distributed Mobile Wireless Environment,”

IEEE Trans. Parallel and Distributed

Systems, vol. 12, no. 7, pp. 686-700, 2001.

14. G. Cao, L. Yin, and C. Das, “Cooperative

Cache-Based Data Access in Ad Hoc

Networks,” Computer, vol. 37, no. 2, pp. 32-

39, 2004.

15. P. Papadimitratos and Z. Haas, “Secure

Data Transmission in Mobile Ad Hoc

Networks,” Proc. ACM Workshop Wireless

Security, pp. 41-50, 2003.

http://www.ijesrt.com/

